Skip to main content

P&A Colloquium

Physics & Astronomy Colloquium

Dr. Elise Novitski, University of Washington

Title: A new approach to measuring neutrino mass

Abstract: Of all the fundamental fermion masses, those of the neutrinos alone remain unmeasured. From their unknown origin to their effects on the evolution of the universe, neutrino masses are of interest across cosmology, nuclear physics, and particle physics. Neutrino oscillation experiments have set a non-zero lower limit on the mass scale, in contradiction to the original Standard Model prediction. To measure neutrino mass precisely and directly one must turn to beta decay and search for a telltale distortion in the spectrum. I will describe a new technique called Cyclotron Radiation Emission Spectroscopy (CRES), in which beta decay of tritium occurs in a magnetic field and each electron's ~1 fW of cyclotron radiation is directly detected. Electron energies are then determined via a relativistic relationship between energy and frequency. I will present the first CRES-based mass limits from the Project 8 experiment, which demonstrate the promise of this technique for surmounting the systematic and statistical barriers that currently limit the precision of direct neutrino mass measurements. I will also describe the next steps on the path to sensitivity to a mass of 40 meV/c^2, covering the entire inverted ordering of neutrino masses

Date:
-
Location:
CP 153
Event Series:

Physics & Astronomy Colloquium

Dr. Ambrose Seo, University of Kentucky

Title: Shaping Light and Charge in Two-Dimensional Materials with Plasmonic Nanostructures

Abstract: Two-dimensional materials such as MoS2 are just one atom thick, which gives them remarkable optical and electronic properties, but also makes them challenging to use efficiently in devices, since their ultrathin nature limits how strongly they interact with light. During my sabbatical in Seoul, I explored new ways to overcome this challenge by combining MoS2 with carefully designed metallic nanostructures that can trap and guide light at the nanoscale. By embedding gold or silver nanowires and nanogrooves beneath or alongside MoS2, we found that we could significantly boost its light emission, collect photo-generated charges more effectively, and improve the efficiency of heterostructures that pair MoS2 with oxide semiconductors. These studies show how "plasmonic" effects, i.e., collective oscillations of electrons in metals, can be harnessed to control light–matter interactions in atomically thin materials. I will present the key outcomes of these projects and discuss how they point toward future opportunities for next-generation devices.

Date:
-
Location:
CP 153
Event Series:

Physics & Astronomy Colloquium

Dr. Daniel Tataru, University of California, Berkeley

Title: Free boundary problems for Euler flows

Abstract: Free boundary problems are very interesting but also very challenging problems in fluid dynamics, where the boundary of the fluid is also freely moving along with the fluid flow. 

I will discuss two such models, governed by the compressible, respectively the incompressible Euler equations, including also MHD flows.  This is joint work with Mihaela Ifrim, and in part with Benjamin Pineau and Mitchell Taylor.

Date:
-
Location:
CP 153
Event Series: