Skip to main content

Biology Ribble Endowment Seminar

"The Dual Role of Parental Conflict in Speciation: Lessons from Mimulus""

Coughlan_Selfie

Dr. Jennifer Coughlan | Coughlan Lab

Bio:
See attached CV here.

Abstract:
Determining what factors generate biodiversity is a central question in evolutionary biology. Despite its long history of study, we are only beginning to understand the evolutionary drivers of reproductive barriers between species, including reproductive barriers that manifest as sterile or dead hybrids. An intriguing hypothesis is that intragenomic conflicts- or selfish evolution- can drive the evolution of alleles that cause hybrid sterility/inviability. One such source of conflict is conflict between parents over resource allocation to offspring. Under parental conflict, multiple paternity drives the evolution of paternally derived, resource-acquiring alleles, and maternally derived alleles that distribute resources equally among offspring. In hybrids, mismatches between these parent-of-origin effect alleles can cause inappropriate development of placenta or endosperm, and subsequently embryo death. Here, I test the role of parental conflict in generating one of the most common intrinsic barriers in seed angiosperms- hybrid seed inviability-using members of the evolutionary and ecological model system; the Mimulus guttatus species complex. I show that hybrid seed inviability has evolved rapidly and repeatedly in this group, and patterns of HSI conform to the predictions of parental conflict. Additionally, genetic mapping suggests that hybrid seed inviability is conferred by nuclear, parent-of-origin effect loci (i.e. loci that affect the probability of death only if maternally or paternally derived). Lastly, using a series of natural surveys and mixed pollination crosses, I find that species with different histories of parental conflict frequently co-occur and hybridize, and hybridization between species with differing histories of parental conflict can indirectly influence growth in intraspecific seeds. Overall, this work highlights a dual role of parental conflict in the speciation process; both in the origin of reproductive isolation, but also in the dynamics and outcomes of hybridization in nature.

Watch the seminar here!
 

Date:
Location:
THM 116

"Phylodynamic and Comparative Approaches for Reconstructing Major Evolutionary Transitions in Deep Time"

Dr. Tiago Simões | Simões Lab

Bio:
Dr. Tiago Simões started his career in his home city (Rio de Janeiro, Brazil), where he obtained his BSc and MSc in Biological Sciences- Zoology at the Federal University of Rio de Janeiro and the National Museum of Brazil. He obtained his PhD at the University of Alberta, Canada, in 2018 working with Dr. Michael Caldwell. Between 2019 and 2023 he was a Postdoctoral Fellow at the Museum of Comparative Zoology & Dpt. Organismic and Evolutionary Biology, Harvard University, working with Dr. Stephanie Pierce, and since 2022 a Research Associate in the Division of Vertebrate Zoology at the American Museum of Natural History. Since 2024, he has been an Assistant Professor in the Dpt. Ecology and Evolutionary Biology at Princeton University.

Dr. Simões’s research integrates data from living and extinct species, as well as morphological and genomic data, to investigate deep time problems in vertebrate evolution, with a special focus on the origin and early evolution of lizards and snakes. He has created several new morphological and total-evidence datasets employing state-of-the-art techniques in Bayesian phylogenetics and phylodynamics that helped bridging gaps between morphological and molecular hypothesis of reptile evolution. These studies, along with new technical advances in phylogenetics have been published in several peer-reviewed scientific articles creating, including in Nature, Nature Ecology & Evolution, and Science Advances

:
The history of life on Earth is marked by complex interactions between species genomes and phenotypes across constantly changing environments. Therefore, it is necessary to investigate these interactions across deep evolutionary time to understand the processes responsible for the construction of both past and modern biological diversity. However, this line of research has historically faced several logistic and methodological limitations, such as the lack of quantitative methods for combining various data types sampled across vastly different organismal and temporal dimensions. Fortunately, the past decade has been testimony to several advances in Bayesian evolutionary analyses that have fostered the integration of data types towards more sophisticated inferences of evolutionary trees and macroevolutionary dynamics. Here, I will illustrate how I have used and expanded this class of techniques to integrate molecular and phenotypic data from living and fossil species to understand the patterns and processes operating across major evolutionary transitions in vertebrates, with a special focus on reptiles. These results have overhauled the structure of key areas of the reptile tree of life, including the origin of lizards and turtles, the interplay between phenotypic and molecular innovations during evolutionary transitions, and how these events have been impacted by climate change across deep time. I conclude by highlighting how a new omics era, integrating whole genomes and phenomes, can conciliate historical challenges in understanding organismal evolution and the interplay between genomes and phenotypes with their surrounding environments across broad taxonomic and time scales.

Watch the seminar here!

Date:
Location:
THM 116

"Phylodynamic and Comparative Approaches for Reconstructing Major Evolutionary Transitions in Deep Time"

Dr. Tiago Simões | Simões Lab

Bio:
Dr. Tiago Simões started his career in his home city (Rio de Janeiro, Brazil), where he obtained his BSc and MSc in Biological Sciences- Zoology at the Federal University of Rio de Janeiro and the National Museum of Brazil. He obtained his PhD at the University of Alberta, Canada, in 2018 working with Dr. Michael Caldwell. Between 2019 and 2023 he was a Postdoctoral Fellow at the Museum of Comparative Zoology & Dpt. Organismic and Evolutionary Biology, Harvard University, working with Dr. Stephanie Pierce, and since 2022 a Research Associate in the Division of Vertebrate Zoology at the American Museum of Natural History. Since 2024, he has been an Assistant Professor in the Dpt. Ecology and Evolutionary Biology at Princeton University.

Dr. Simões’s research integrates data from living and extinct species, as well as morphological and genomic data, to investigate deep time problems in vertebrate evolution, with a special focus on the origin and early evolution of lizards and snakes. He has created several new morphological and total-evidence datasets employing state-of-the-art techniques in Bayesian phylogenetics and phylodynamics that helped bridging gaps between morphological and molecular hypothesis of reptile evolution. These studies, along with new technical advances in phylogenetics have been published in several peer-reviewed scientific articles creating, including in Nature, Nature Ecology & Evolution, and Science Advances

:
The history of life on Earth is marked by complex interactions between species genomes and phenotypes across constantly changing environments. Therefore, it is necessary to investigate these interactions across deep evolutionary time to understand the processes responsible for the construction of both past and modern biological diversity. However, this line of research has historically faced several logistic and methodological limitations, such as the lack of quantitative methods for combining various data types sampled across vastly different organismal and temporal dimensions. Fortunately, the past decade has been testimony to several advances in Bayesian evolutionary analyses that have fostered the integration of data types towards more sophisticated inferences of evolutionary trees and macroevolutionary dynamics. Here, I will illustrate how I have used and expanded this class of techniques to integrate molecular and phenotypic data from living and fossil species to understand the patterns and processes operating across major evolutionary transitions in vertebrates, with a special focus on reptiles. These results have overhauled the structure of key areas of the reptile tree of life, including the origin of lizards and turtles, the interplay between phenotypic and molecular innovations during evolutionary transitions, and how these events have been impacted by climate change across deep time. I conclude by highlighting how a new omics era, integrating whole genomes and phenomes, can conciliate historical challenges in understanding organismal evolution and the interplay between genomes and phenotypes with their surrounding environments across broad taxonomic and time scales.

Watch the seminar here!

Date:
Location:
THM 116

"Phylodynamic and Comparative Approaches for Reconstructing Major Evolutionary Transitions in Deep Time"

Dr. Tiago Simões | Simões Lab

Bio:
Dr. Tiago Simões started his career in his home city (Rio de Janeiro, Brazil), where he obtained his BSc and MSc in Biological Sciences- Zoology at the Federal University of Rio de Janeiro and the National Museum of Brazil. He obtained his PhD at the University of Alberta, Canada, in 2018 working with Dr. Michael Caldwell. Between 2019 and 2023 he was a Postdoctoral Fellow at the Museum of Comparative Zoology & Dpt. Organismic and Evolutionary Biology, Harvard University, working with Dr. Stephanie Pierce, and since 2022 a Research Associate in the Division of Vertebrate Zoology at the American Museum of Natural History. Since 2024, he has been an Assistant Professor in the Dpt. Ecology and Evolutionary Biology at Princeton University.

Dr. Simões’s research integrates data from living and extinct species, as well as morphological and genomic data, to investigate deep time problems in vertebrate evolution, with a special focus on the origin and early evolution of lizards and snakes. He has created several new morphological and total-evidence datasets employing state-of-the-art techniques in Bayesian phylogenetics and phylodynamics that helped bridging gaps between morphological and molecular hypothesis of reptile evolution. These studies, along with new technical advances in phylogenetics have been published in several peer-reviewed scientific articles creating, including in Nature, Nature Ecology & Evolution, and Science Advances

:
The history of life on Earth is marked by complex interactions between species genomes and phenotypes across constantly changing environments. Therefore, it is necessary to investigate these interactions across deep evolutionary time to understand the processes responsible for the construction of both past and modern biological diversity. However, this line of research has historically faced several logistic and methodological limitations, such as the lack of quantitative methods for combining various data types sampled across vastly different organismal and temporal dimensions. Fortunately, the past decade has been testimony to several advances in Bayesian evolutionary analyses that have fostered the integration of data types towards more sophisticated inferences of evolutionary trees and macroevolutionary dynamics. Here, I will illustrate how I have used and expanded this class of techniques to integrate molecular and phenotypic data from living and fossil species to understand the patterns and processes operating across major evolutionary transitions in vertebrates, with a special focus on reptiles. These results have overhauled the structure of key areas of the reptile tree of life, including the origin of lizards and turtles, the interplay between phenotypic and molecular innovations during evolutionary transitions, and how these events have been impacted by climate change across deep time. I conclude by highlighting how a new omics era, integrating whole genomes and phenomes, can conciliate historical challenges in understanding organismal evolution and the interplay between genomes and phenotypes with their surrounding environments across broad taxonomic and time scales.

Watch the seminar here!

Date:
Location:
THM 116

"Phylodynamic and Comparative Approaches for Reconstructing Major Evolutionary Transitions in Deep Time"

Dr. Tiago Simões | Simões Lab

Bio:
Dr. Tiago Simões started his career in his home city (Rio de Janeiro, Brazil), where he obtained his BSc and MSc in Biological Sciences- Zoology at the Federal University of Rio de Janeiro and the National Museum of Brazil. He obtained his PhD at the University of Alberta, Canada, in 2018 working with Dr. Michael Caldwell. Between 2019 and 2023 he was a Postdoctoral Fellow at the Museum of Comparative Zoology & Dpt. Organismic and Evolutionary Biology, Harvard University, working with Dr. Stephanie Pierce, and since 2022 a Research Associate in the Division of Vertebrate Zoology at the American Museum of Natural History. Since 2024, he has been an Assistant Professor in the Dpt. Ecology and Evolutionary Biology at Princeton University.

Dr. Simões’s research integrates data from living and extinct species, as well as morphological and genomic data, to investigate deep time problems in vertebrate evolution, with a special focus on the origin and early evolution of lizards and snakes. He has created several new morphological and total-evidence datasets employing state-of-the-art techniques in Bayesian phylogenetics and phylodynamics that helped bridging gaps between morphological and molecular hypothesis of reptile evolution. These studies, along with new technical advances in phylogenetics have been published in several peer-reviewed scientific articles creating, including in Nature, Nature Ecology & Evolution, and Science Advances

:
The history of life on Earth is marked by complex interactions between species genomes and phenotypes across constantly changing environments. Therefore, it is necessary to investigate these interactions across deep evolutionary time to understand the processes responsible for the construction of both past and modern biological diversity. However, this line of research has historically faced several logistic and methodological limitations, such as the lack of quantitative methods for combining various data types sampled across vastly different organismal and temporal dimensions. Fortunately, the past decade has been testimony to several advances in Bayesian evolutionary analyses that have fostered the integration of data types towards more sophisticated inferences of evolutionary trees and macroevolutionary dynamics. Here, I will illustrate how I have used and expanded this class of techniques to integrate molecular and phenotypic data from living and fossil species to understand the patterns and processes operating across major evolutionary transitions in vertebrates, with a special focus on reptiles. These results have overhauled the structure of key areas of the reptile tree of life, including the origin of lizards and turtles, the interplay between phenotypic and molecular innovations during evolutionary transitions, and how these events have been impacted by climate change across deep time. I conclude by highlighting how a new omics era, integrating whole genomes and phenomes, can conciliate historical challenges in understanding organismal evolution and the interplay between genomes and phenotypes with their surrounding environments across broad taxonomic and time scales.

Watch the seminar here!

Date:
Location:
THM 116

"Phylodynamic and Comparative Approaches for Reconstructing Major Evolutionary Transitions in Deep Time"

Dr. Tiago Simões | Simões Lab

Bio:
Dr. Tiago Simões started his career in his home city (Rio de Janeiro, Brazil), where he obtained his BSc and MSc in Biological Sciences- Zoology at the Federal University of Rio de Janeiro and the National Museum of Brazil. He obtained his PhD at the University of Alberta, Canada, in 2018 working with Dr. Michael Caldwell. Between 2019 and 2023 he was a Postdoctoral Fellow at the Museum of Comparative Zoology & Dpt. Organismic and Evolutionary Biology, Harvard University, working with Dr. Stephanie Pierce, and since 2022 a Research Associate in the Division of Vertebrate Zoology at the American Museum of Natural History. Since 2024, he has been an Assistant Professor in the Dpt. Ecology and Evolutionary Biology at Princeton University.

Dr. Simões’s research integrates data from living and extinct species, as well as morphological and genomic data, to investigate deep time problems in vertebrate evolution, with a special focus on the origin and early evolution of lizards and snakes. He has created several new morphological and total-evidence datasets employing state-of-the-art techniques in Bayesian phylogenetics and phylodynamics that helped bridging gaps between morphological and molecular hypothesis of reptile evolution. These studies, along with new technical advances in phylogenetics have been published in several peer-reviewed scientific articles creating, including in Nature, Nature Ecology & Evolution, and Science Advances

:
The history of life on Earth is marked by complex interactions between species genomes and phenotypes across constantly changing environments. Therefore, it is necessary to investigate these interactions across deep evolutionary time to understand the processes responsible for the construction of both past and modern biological diversity. However, this line of research has historically faced several logistic and methodological limitations, such as the lack of quantitative methods for combining various data types sampled across vastly different organismal and temporal dimensions. Fortunately, the past decade has been testimony to several advances in Bayesian evolutionary analyses that have fostered the integration of data types towards more sophisticated inferences of evolutionary trees and macroevolutionary dynamics. Here, I will illustrate how I have used and expanded this class of techniques to integrate molecular and phenotypic data from living and fossil species to understand the patterns and processes operating across major evolutionary transitions in vertebrates, with a special focus on reptiles. These results have overhauled the structure of key areas of the reptile tree of life, including the origin of lizards and turtles, the interplay between phenotypic and molecular innovations during evolutionary transitions, and how these events have been impacted by climate change across deep time. I conclude by highlighting how a new omics era, integrating whole genomes and phenomes, can conciliate historical challenges in understanding organismal evolution and the interplay between genomes and phenotypes with their surrounding environments across broad taxonomic and time scales.

Watch the seminar here!

Date:
Location:
THM 116

"Phylodynamic and Comparative Approaches for Reconstructing Major Evolutionary Transitions in Deep Time"

Dr. Tiago Simões | Simões Lab

Bio:
Dr. Tiago Simões started his career in his home city (Rio de Janeiro, Brazil), where he obtained his BSc and MSc in Biological Sciences- Zoology at the Federal University of Rio de Janeiro and the National Museum of Brazil. He obtained his PhD at the University of Alberta, Canada, in 2018 working with Dr. Michael Caldwell. Between 2019 and 2023 he was a Postdoctoral Fellow at the Museum of Comparative Zoology & Dpt. Organismic and Evolutionary Biology, Harvard University, working with Dr. Stephanie Pierce, and since 2022 a Research Associate in the Division of Vertebrate Zoology at the American Museum of Natural History. Since 2024, he has been an Assistant Professor in the Dpt. Ecology and Evolutionary Biology at Princeton University.

Dr. Simões’s research integrates data from living and extinct species, as well as morphological and genomic data, to investigate deep time problems in vertebrate evolution, with a special focus on the origin and early evolution of lizards and snakes. He has created several new morphological and total-evidence datasets employing state-of-the-art techniques in Bayesian phylogenetics and phylodynamics that helped bridging gaps between morphological and molecular hypothesis of reptile evolution. These studies, along with new technical advances in phylogenetics have been published in several peer-reviewed scientific articles creating, including in Nature, Nature Ecology & Evolution, and Science Advances

:
The history of life on Earth is marked by complex interactions between species genomes and phenotypes across constantly changing environments. Therefore, it is necessary to investigate these interactions across deep evolutionary time to understand the processes responsible for the construction of both past and modern biological diversity. However, this line of research has historically faced several logistic and methodological limitations, such as the lack of quantitative methods for combining various data types sampled across vastly different organismal and temporal dimensions. Fortunately, the past decade has been testimony to several advances in Bayesian evolutionary analyses that have fostered the integration of data types towards more sophisticated inferences of evolutionary trees and macroevolutionary dynamics. Here, I will illustrate how I have used and expanded this class of techniques to integrate molecular and phenotypic data from living and fossil species to understand the patterns and processes operating across major evolutionary transitions in vertebrates, with a special focus on reptiles. These results have overhauled the structure of key areas of the reptile tree of life, including the origin of lizards and turtles, the interplay between phenotypic and molecular innovations during evolutionary transitions, and how these events have been impacted by climate change across deep time. I conclude by highlighting how a new omics era, integrating whole genomes and phenomes, can conciliate historical challenges in understanding organismal evolution and the interplay between genomes and phenotypes with their surrounding environments across broad taxonomic and time scales.

Watch the seminar here!

Date:
Location:
THM 116

"Evolution of Floral Disparity through Integration of Fossil and Extant Morphological Diversity"

Selfie

Dr. Susana Magallón Puebla

Bio:
Dr. Susana Magallón Puebla is the Director of the Biology Institute at the Universad Nacional Autónoma de México. She is an evolutionary biologist who focuses on understanding macroevolutionary processes associated to the evolution of flowering plants, including their floral structure, the timing and dynamics of their diversification, and the mechanisms of acquisition of species richness in diverse Mesoamerican lineages. She obtained her B.Sc. and M.SC. degrees from UNAM, and a Ph.D. from the University of Chicago. She held a postdoctoral fellowship at the University of California, Davis. Her research is characterized by a deep understanding and integration of paleobiology and of phylogenetic comparative methods, involving the combination of morphological and molecular data from extant and fossil species. Dr. Magallón was inducted as a member of the National Academy of Sciences (USA)  and the Royal Society (UK) in 2024 because of the quality of her research and contributions to the scientific community.

Abstract:
Integration of molecular data, to provide a general phylogenetic framework, and morphological data, to allow incorporation of fossils, represents a cardinal approach to investigate evolution in deep time. We assembled a morphological matrix for 1201 extant species representing all angiosperm families, and 121 well-preserved fossil flowers, and in combination with a molecular database for extant species based on exemplar representation, used it to investigate methodological issues relating to integration of extant and fossil taxa in phylogenetic estimation; divergence time estimation in a full Total Evidence approach; and estimation of the theoretical floral morphospace. Phylogenetic analyses used different optimization criteria and kinds of data to estimate relationships, as well as uncertainty in fossil placements. We found that the joint use of molecular and morphological data in a parametric context allows to recover a phylogenetic framework in agreement with molecular estimates, and fossils associated to branches in agreement with assessments based on detailed morphological comparisons. Nevertheless, uncertainty associated to fossil placements is usually high. An attempt to estimate divergence times using morphological, molecular and temporal information indicates that, while available models to integrate extant and fossil species in the same diversification process represent significant advances, there are practical difficulties with fossils for which few characters can be scored, and in the free estimation of model parameters. The theoretical morphospace of floral structure was estimated through the construction of a pairwise distance matrix among extant and fossil species, estimation of disparity, and ordination techniques to reduce dimensionality. The area of the theoretical morphospace occupied by extant and fossil species was identified, as well as how morphospace occupation has changed through time and among groups. A decrease in morphospace occupation towards the present and canalization in the of morphospace occupation among derived clades are documented, in agreement with previous independent observations.


How did the first flower in the history of Earth look like?

Date:
Location:
THM 116

"Evolution of Floral Disparity through Integration of Fossil and Extant Morphological Diversity"

Selfie

Dr. Susana Magallón Puebla

Bio:
Dr. Susana Magallón Puebla is the Director of the Biology Institute at the Universad Nacional Autónoma de México. She is an evolutionary biologist who focuses on understanding macroevolutionary processes associated to the evolution of flowering plants, including their floral structure, the timing and dynamics of their diversification, and the mechanisms of acquisition of species richness in diverse Mesoamerican lineages. She obtained her B.Sc. and M.SC. degrees from UNAM, and a Ph.D. from the University of Chicago. She held a postdoctoral fellowship at the University of California, Davis. Her research is characterized by a deep understanding and integration of paleobiology and of phylogenetic comparative methods, involving the combination of morphological and molecular data from extant and fossil species. Dr. Magallón was inducted as a member of the National Academy of Sciences (USA)  and the Royal Society (UK) in 2024 because of the quality of her research and contributions to the scientific community.

Abstract:
Integration of molecular data, to provide a general phylogenetic framework, and morphological data, to allow incorporation of fossils, represents a cardinal approach to investigate evolution in deep time. We assembled a morphological matrix for 1201 extant species representing all angiosperm families, and 121 well-preserved fossil flowers, and in combination with a molecular database for extant species based on exemplar representation, used it to investigate methodological issues relating to integration of extant and fossil taxa in phylogenetic estimation; divergence time estimation in a full Total Evidence approach; and estimation of the theoretical floral morphospace. Phylogenetic analyses used different optimization criteria and kinds of data to estimate relationships, as well as uncertainty in fossil placements. We found that the joint use of molecular and morphological data in a parametric context allows to recover a phylogenetic framework in agreement with molecular estimates, and fossils associated to branches in agreement with assessments based on detailed morphological comparisons. Nevertheless, uncertainty associated to fossil placements is usually high. An attempt to estimate divergence times using morphological, molecular and temporal information indicates that, while available models to integrate extant and fossil species in the same diversification process represent significant advances, there are practical difficulties with fossils for which few characters can be scored, and in the free estimation of model parameters. The theoretical morphospace of floral structure was estimated through the construction of a pairwise distance matrix among extant and fossil species, estimation of disparity, and ordination techniques to reduce dimensionality. The area of the theoretical morphospace occupied by extant and fossil species was identified, as well as how morphospace occupation has changed through time and among groups. A decrease in morphospace occupation towards the present and canalization in the of morphospace occupation among derived clades are documented, in agreement with previous independent observations.


How did the first flower in the history of Earth look like?

Date:
Location:
THM 116

"Evolution of Floral Disparity through Integration of Fossil and Extant Morphological Diversity"

Selfie

Dr. Susana Magallón Puebla

Bio:
Dr. Susana Magallón Puebla is the Director of the Biology Institute at the Universad Nacional Autónoma de México. She is an evolutionary biologist who focuses on understanding macroevolutionary processes associated to the evolution of flowering plants, including their floral structure, the timing and dynamics of their diversification, and the mechanisms of acquisition of species richness in diverse Mesoamerican lineages. She obtained her B.Sc. and M.SC. degrees from UNAM, and a Ph.D. from the University of Chicago. She held a postdoctoral fellowship at the University of California, Davis. Her research is characterized by a deep understanding and integration of paleobiology and of phylogenetic comparative methods, involving the combination of morphological and molecular data from extant and fossil species. Dr. Magallón was inducted as a member of the National Academy of Sciences (USA)  and the Royal Society (UK) in 2024 because of the quality of her research and contributions to the scientific community.

Abstract:
Integration of molecular data, to provide a general phylogenetic framework, and morphological data, to allow incorporation of fossils, represents a cardinal approach to investigate evolution in deep time. We assembled a morphological matrix for 1201 extant species representing all angiosperm families, and 121 well-preserved fossil flowers, and in combination with a molecular database for extant species based on exemplar representation, used it to investigate methodological issues relating to integration of extant and fossil taxa in phylogenetic estimation; divergence time estimation in a full Total Evidence approach; and estimation of the theoretical floral morphospace. Phylogenetic analyses used different optimization criteria and kinds of data to estimate relationships, as well as uncertainty in fossil placements. We found that the joint use of molecular and morphological data in a parametric context allows to recover a phylogenetic framework in agreement with molecular estimates, and fossils associated to branches in agreement with assessments based on detailed morphological comparisons. Nevertheless, uncertainty associated to fossil placements is usually high. An attempt to estimate divergence times using morphological, molecular and temporal information indicates that, while available models to integrate extant and fossil species in the same diversification process represent significant advances, there are practical difficulties with fossils for which few characters can be scored, and in the free estimation of model parameters. The theoretical morphospace of floral structure was estimated through the construction of a pairwise distance matrix among extant and fossil species, estimation of disparity, and ordination techniques to reduce dimensionality. The area of the theoretical morphospace occupied by extant and fossil species was identified, as well as how morphospace occupation has changed through time and among groups. A decrease in morphospace occupation towards the present and canalization in the of morphospace occupation among derived clades are documented, in agreement with previous independent observations.


How did the first flower in the history of Earth look like?

Date:
Location:
THM 116